Interactions Between a Voltage Sensor and a Toxin via Multiscale Simulations

نویسندگان

  • Chze Ling Wee
  • David Gavaghan
  • Mark S.P. Sansom
چکیده

Gating-modifier toxins inhibit voltage-gated ion channels by binding the voltage sensors (VS) and altering the energetics of voltage-dependent gating. These toxins are thought to gain access to the VS via the membrane (i.e., by partitioning from water into the membrane before binding the VS). We used serial multiscale molecular-dynamics (MD) simulations, via a combination of coarse-grained (CG) and atomistic (AT) simulations, to study how the toxin VSTx1, which inhibits the archeabacterial voltage-gated potassium channel KvAP, interacts with an isolated membrane-embedded VS domain. In the CG simulations, VSTx1, which was initially located in water, partitioned into the headgroup/water interface of the lipid bilayer before binding the VS. The CG configurations were used to generate AT representations of the system, which were subjected to AT-MD to further evaluate the stability of the complex and refine the predicted VS/toxin interface. VSTx1 interacted with a binding site on the VS formed by the C-terminus of S1, the S1-S2 linker, and the N-terminus of S4. The predicted VS/toxin interactions are suggestive of toxin-mediated perturbations of the interaction between the VS and the pore domain of Kv channels, and of the membrane. Our simulations support a membrane-access mechanism of inhibition of Kv channels by VS toxins. Overall, the results show that serial multiscale MD simulations may be used to model a two-stage process of protein-bilayer and protein-protein interactions within a membrane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Vacancy Defects on the Young’s Modulus of Carbon Nanotube Reinforced Composites in Axial Direction via a Multiscale Modeling Approach

In this article, the influence of various vacancy defects on the Young’s modulus of carbon nanotube (CNT) - reinforcement polymer composite in the axial direction is investigated via a structural model in ANSYS software. Their high strength can be affected by the presence of defects in the nanotubes used as reinforcements in practical nanocomposites. Molecular structural mechanics (MSM)/finite ...

متن کامل

Beta-scorpion toxin effects suggest electrostatic interactions in domain II of voltage-dependent sodium channels.

Beta-scorpion toxins specifically modulate the voltage dependence of sodium channel activation by acting through a voltage-sensor trapping model. We used mutagenesis, functional analysis and the action of beta-toxin as tools to investigate the existence and role in channel activation of molecular interactions between the charged residues of the S2, S3 and S4 segments in domain II of sodium chan...

متن کامل

Structural interactions of a voltage sensor toxin with lipid membranes.

Protein toxins from tarantula venom alter the activity of diverse ion channel proteins, including voltage, stretch, and ligand-activated cation channels. Although tarantula toxins have been shown to partition into membranes, and the membrane is thought to play an important role in their activity, the structural interactions between these toxins and lipid membranes are poorly understood. Here, w...

متن کامل

Nanobiosensor designing with molecular framework polymer method compared with agent-linked nanosilica biosensor for Staphylococcus aureus exotoxin detection

Considering the ever increasing population and industrialization leading to developmental trend of humankind's life, we are hardly able to detect the toxins produced in food products using traditional techniques. In this technique, the production of molecular framework and polymer is done using meta acrylic acid monomers, which are formed via covalence connection between meta acrylic acid monom...

متن کامل

Mapping the interaction site for a β-scorpion toxin in the pore module of domain III of voltage-gated Na(+) channels.

Activation of voltage-gated sodium (Na(v)) channels initiates and propagates action potentials in electrically excitable cells. β-Scorpion toxins, including toxin IV from Centruroides suffusus suffusus (CssIV), enhance activation of Na(V) channels. CssIV stabilizes the voltage sensor in domain II in its activated state via a voltage-sensor trapping mechanism. Amino acid residues required for th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical Journal

دوره 98  شماره 

صفحات  -

تاریخ انتشار 2010